Как найти свободный Wi-Fi канал, и сменить канал на роутере?

Заметил, что многих интересует вопрос выбора свободного канала Wi-Fi сети и смены этого канала в настройках маршрутизатора. Это и не странно, из-за канала, точнее из-за того что на канале появляются помехи, возникает множество проблем в работе интернета по Wi-Fi. Частые обрывы соединения по Wi-Fi, низкая скорость соединения, нестабильная работа и т. д. Все это может быть из-за того, что на канале, на котором работает ваша сеть начинают работать другие сети и получается что канал очень загруженный.

А еще, если ваше устройство просто не видит Wi-Fi сеть, а другие сети видит и другие устрйоства видят эту сеть, то это так же может быть из-за настроек канала беспроводной сети. Сейчас расскажу почему так происходит, как найти свободный канал и сменить его в настройках вашего роутера. Рассмотрим самые популярные роутеры, таких производителей как: Tp-Link, D-Link, Asus, Zyxel и Tenda.

На каких частотах работает роутер

На данный момент, маршрутизаторы работают на частотах 2,4 ГГц и 5 ГГц. Причем, 2,4 ГГц появилась раньше, поэтому основная масса точек доступа работают именно в этом диапазоне. В свою очередь, каждая Wi-Fi сеть на этой частоте, работает на каналах от 1-го до 13-го. Зачастую, проблемы с подключением могут возникнуть, если несколько соседних роутеров работают на одном канале и делят скорость между собой. Обычно, маршрутизаторы автоматически подключаются к более свободному каналу, поэтому эту проблему можно решить, попросту перезагрузив сетевое оборудование.

Тем не менее, это не освобождает диапазон 2,4 ГГц от нагрузки большого количества устройств, работающих на нём, тем более, что это могут быть не только роутеры, но и некоторые бытовые приборы. Поэтому, мы рекомендуем дополнительно задействовать частоту 5 ГГц, как более новую и свободную. Почему именно дополнительно? Дело в том, обе частоты работают независимо друг от друга и не все устройства (особенно устаревшие) работают в диапазоне 5 ГГц. Хотя, если вы полностью уверены, что не потребуется подключать устройства поддерживающие только 2,4 ГГц, можно полностью сменить частоту Wi-Fi роутера на 5 ГГц.

OFDMA в каналах DownLink и UpLink

OFDMA (множественный доступ с ортогональным частотным разделением каналов) обеспечивает возможность установления Uplink/Downlink соединений между точкой доступа и несколькими клиентами одновременно за счет выделения для отдельных клиентов подмножеств поднесущих, называемых «ресурсными единицами» (Resource Units, RU). Это одна из наиболее сложных функций в стандарте 802.11ax.

OFDMA в канале UpLink по работе эквивалентен OFDMA в DownLink, но в этом случае несколько клиентских устройств осуществляют передачу одновременно на разных группах поднесущих в одном и том же канале. OFDMA UpLink канала сложнее в управлении OFDMA DownLink канала, поскольку необходимо координировать множество разных клиентов: для этого точка доступа передает триггерные кадры, чтобы указать, какие подканалы может использовать каждый клиент.

Если клиент один, ТД отдаст ему весь канал, но как только в сети появятся новые клиенты, пропускная способность канала будет перераспределена между ними.

Важная особенность технологии OFDMA

Передача данных может осуществляться на тех поднесущих, которые для данного пользователя наименее подвержены частотно-селективной интерференции.
Для выбора таких поднесущих каждая точка доступа отправляет отчеты о качестве передачи с использованием разных поднесущих.

2.4 ГГц

Как уже и было сказано, пока что это основной и лидирующий стандарт передачи данных. На данной частоте работает 13 каналов. Каждый канал имеет ширину в 20 Мгц. Давайте взглянем на диаграмму ниже.

Частоты Wi-Fi: 2.4 и 5 ГГц - полный разбор WiFi диапазонов

Как видите есть ещё и 14 канал, но он не используется в современных роутерах и маршрутизаторах. Также начало волн начинается с 2.400 GHz, а заканчивается на 2.500 GHz. Один канал занимает от 20 до 40 МГц. На картинке выше канал имеет как раз ширину волны 20 МГц. Но современные маршрутизаторы могут использовать более широкий канал в 40 МГц.

Если присмотреться, то начало следующего канала начинается с 2.406 МГц, то есть один канал может перекрещиваться с ещё 5 каналами. Если на одном канале сидит очень много роутеров, то сигнал может ухудшаться, из-за потери пакетов, появляются лаги, а приёмнику нужно заново отправлять потерянные данные.

Частоты Wi-Fi: 2.4 и 5 ГГц - полный разбор WiFi диапазонов

Такое часто происходит в многоквартирных домах, когда несколько каналов занимает сразу 2 или даже 3 соседских роутера. На современных аппаратах, вся конфигурация подбора каналов происходит в автономном режиме. Когда роутер включается он ищет максимально отдалённую волну от уже занятых.

ПРИМЕЧАНИЕ! Иногда роутер не может сам выбрать канал и начинаются прерывания, лаги, падает скорость. Советую прочесть мою статью – где я рассказываю, как правильно выбрать канал и улучшить сигнал.

Также на картинке более ярко выделены частоты, которые не пересекаются — это 1, 6 и 11. В идеале, передача данных в этих каналах будет почти без потерь. Соседние же каналы могут слегка портить связь. Если же стоит настройка с шириной – 40 МГц, то канал дополнительно будет пересекаться ещё с 5, что может пагубно влиять на связь.

ВНИМАНИЕ! В Америке использование 12 и 13 частоты – запрещено законом. Поэтому если выбрать в настройках интернет-центра эти диапазоны, то могут быть проблемы с некоторыми устройствами, выпущенными в США.

Как и у любой волны у подобной есть качество затухания, которое напрямую зависит от частоты. 2.4 ГГц — это дециметровая гипервысокая частота. Длина волны примерно равняется 124.3 – 121.3 мм. При такой частоте скорость передачи данных будет выше, но при этом и радиус вещание не будет страдать.

На 2.4 ГГц работают такие стандарты как:

  1. 802.11a
  2. 802.11b
  3. 802.11g
  4. 802.11h
  5. 802.11i
  6. 802.11n

Чаще всего используется именно b, g и n. Первые два более старые и уже устаревают, но все же пока осталось, достаточно много устройств, работающих на этих стандартах. Скорость передачи у них от 11 до 54 Мбит в секунду. Последний N – более новый стандарт, изобретённый в 2009 году. Скорость передачи может достигать 600 Мбит в секунду при нескольких потоках. На одном потоке максимальная скорость – 300 Мбит в сек.

Больше, лучше, быстрее – новая мантра 802.11ax

Эволюция развития Wi-Fi стандартов

16 сентября 2019 года Wi-Fi Alliance объявил об официальном запуске сертифицированной программы Wi-Fi Certified 6, которая обещает более высокую скорость беспроводного соединения, меньшую задержку, увеличенное время автономной работы и меньшую загрузку сети.

802.11ас Wave 2

Устройства «второй волны» 802.11ac поддерживают большее количество каналов связи и пространственных потоков, при этом возможные конфигурации продукта работают на скорости до 3,47 Гбит/с.

Это надо знать! 802.11ac — это технология, работающая только на 5 ГГц, поэтому двухдиапазонные точки доступа и клиенты продолжают использовать 802.11n с частотой 2,4 ГГц. Однако клиенты 802.11ac работают в менее загруженной полосе 5 ГГц.

В Wave 2 добавили поддержку таких технологий как MU-MIMO (многопользовательское планирование) и Beamforming (формирование луча).

MU-MIMO означает многопользовательский, множественный вход, множественный выход и является беспроводной технологией, позволяющей взаимодействовать маршрутизаторам с несколькими пользователями одновременно.

MU-MIMO — это следующая эволюция однопользовательского MIMO (SU-MIMO), который обычно называют MIMO. Технология MIMO была создана для того, чтобы увеличить количество антенн на беспроводном маршрутизаторе, которые используются как для приема, так и для передачи, и повысить пропускную способность беспроводных соединений.
На 2019 год многие устройства поддерживают MU-MIMO производитель микросхем Wi-Fi Qualcomm имеет список устройств — включая iPhone версий 6, 6 Plus и более поздних версий, которые включают в себя технологию 802.11ac MU-MIMO, а Wi-Fi Alliance имеет список из более чем 550 продуктов с использованием технологии MU-MIMO.

Радиоволны

Передача данных происходит путём обычного кодирования, а в последствии перенаправлении кода на передатчик. Он в свою очередь переформатирует электронный сигнал в радиоволну Радиоволна также используется и в передачи информации в мобильной связи, телевидении и также в разогреве еды в микроволновой печи.

Частоты Wi-Fi: 2.4 и 5 ГГц - полный разбор WiFi диапазонов

У волны как вы, наверное, помните из физики есть три характеристики: частота, амплитуда или высота, а также длина. Именно первая и определяет канал передачи, а также скорость передачи для отдельных более высоких частот.

В частности, изначально с 2000 до 2009 года использовался только один стандарт с частотой 2.4 ГГц. На данный момент он является самым распространенным, так как имеет высокую скорость передачи данных и больший диапазон распространения.

Улучшения от 802.11n к 802.11ac

В стандарте 802.11ac увеличение скорости происходит за счет 3 улучшений:

  • Большая ширина канала, увеличено с максимума 40 МГц с 802.11n до 80 или даже 160 МГц (что дает увеличение скорости на 117 или 333 процента соответственно).
  • Более плотная модуляция, используется 256 квадратурно-амплитудная модуляция (QAM), по сравнению с 64-QAM в 802.11n (для увеличения скорости на 33 процента в более узких, но все еще пригодных для использования диапазонах).
  • Увеличено число приемников и передатчиков до 8, реализована схема MIMO 8×8, в то время как 802.11n остановился на четырех пространственных каналах (это еще одно увеличение скорости на 100 процентов).

Обратите внимание! Найти устройства с 8×8 можно только в провайдерском сегменте, но зато есть задел на будущее расширение функционала.

Конструктивные ограничения и экономичность, из-за которых продукты 802.11n находились в одном, двух или трех пространственных потоках, не сильно изменились для 802.11ac. Устройства первой волны стандарта 802.11ac построены на частоте 80 МГц и на физическом уровне работают на скорости до 433 Мбит/с (нижний уровень), 867 Мбит/с (средний уровень) или 1300 Мбит/с (верхний уровень).

Экскурс в историю развития группы 802.11

По данным немецкого аналитического агентства на 2019 год в мире ежедневно около 15 миллиардов устройств подключается к Wi-Fi сети. Подсчитано, что уже через год это число может возрасти до 20 миллиардов.

Начиная с 2012 года, и по сегодняшний день, 802.11ac является последней действующей ревизией Wi-Fi.

900 MHz

Преимущества и недостатки:

Меньшая восприимчивость к деревьям и другим препятствиям в зоне прямой видимости по сравнению с более высокими частотами.
 Обычно более высокий уровень шума.
  Ширина полосы только 26 МГц.
  Применение требует лицензии.
  В Украине это диапазон используется сотовыми операторами, поэтому применять его нужно крайне осторожно.

 

Что такое канал Wi-Fi сети и зачем его менять?

Что бы лучше понимать ситуацию, давайте сначала разберемся что к чему. На данный момент, практически все маршрутизаторы транслируют беспроводную сеть на частоте 2,4 ГГц. Есть уже новые, которые работают на частоте 5 Ггц, но их пока мало. Они дорогие, да и не все готовы выкинуть свой роутер и купить новый, что бы только сеть была на частоте 5 Ггц. Это понятно. Так вот, на частоте 2,4 ГГц, в Украине и России разрешено использовать от 1-го по 13-ый канал. Это значит, что каждая Wi-Fi сеть работает на канале от 1-го по 13-ый. В Америке, например, разрешено использовать только 11 каналов. Из-за этого, кстати, возникают проблемы при подключении к беспроводным сетям устройств, который привезены с Америки. Они просто не видят Wi-Fi, который работает на 12-том, или 13-том канале.

Как правило, проблемы начинаются тогда, когда две (а может быть и больше) Wi-Fi сети встают на один канал. Если вы живете в частном доме, то у вас в радиусе действия вашего Wi-Fi скорее всего не будет вообще других сетей, а если и будут, то их будет мало, а сигнал слабый. А вот в квартире, может быть очень много сетей. И они очень часто встают на один канал. Почему? Сейчас объясню. Например, вы настраиваете свой роутер, и в настройках выбираете статический канал, пускай будет 6-той. Ваш сосед настраивает роутер и так же ставит 6-той канал.

Поиск не загруженного канала

По умолчанию, в настройках роутера стоит режим автоматического выбора канала. Это значит, что когда роутер включается, он выбирает для себя свободный канал (или менее загруженный). Перезагружаем его, и он уже может выбрать другой канал. Работает ли эта штука я не знаю, но думаю, что и при автоматическом выборе на 1 канал может вставать несколько сетей. Особенно, если сетей очень много. Им просто некуда деваться.

Честно говоря, я нее сильно поддерживаю идею установки статического канала. Считаю, что в авто режиме все должно работать хорошо. Если возникают какие-то проблемы, то можно перезагрузить роутер и он выберет другой канал. А если вы принудительно установите скажем 1-ый канал, который еще выберет несколько человек, то ничего хорошего с этого не получится. Есть программы, которые показывают на каком канале работают все доступные сети, мы их сейчас рассмотрим.

Формат кадра Wi-Fi6

Каждый кадр начинается с преамбулы, которая состоит из двух частей:

  • Стандартной части, используемой для обеспечения обратной совместимости с предыдущими стандартами. Для синхронизации приемника и его настройки на принимаемый сигнал в кадре содержатся поля с символами обучающих последовательностей (LSTF и LLTF), а поле LSIG необходимо для вычисления длительности кадра.
  • Преамбулы 802.11ax, декодируется только станциями Wi-Fi 6. Новая преамбула содержит обязательное поле HE-SIG-A, опциональное поле HE-SIG-B, а также специальные обучающие последовательности для настройки MIMO.

OFDMA позволяет нарезать полосу 20, 40, 80 и 160 МГц на дополнительные более мелкие подканалы с предопределенным количеством поднесущих.
Наименьший выделенный подканал в стандарте 802.11ax составляет 26 поднесущих (2 МГц). В канале 20 МГц имеется 9 доступных подканалов с 26 поднесущими, что позволяет использовать на прием и передачу до 9-ти различных кадров. IEEE использует термин «Ресурсная единица» (RU) для обозначения подканалов. Блок из 26 поднесущих, указанный выше, известен как RU-26, например: полный набор — RU-26, RU-52, RU-106, RU-242, RU-484 и RU-996.

Слева — 4 пользователя в канале с использованием OFDM. Справа мультиплексирование различных пользователей в одном канале с использованием OFDMA.

Есть и другие преимущества. Количество защитных и нулевых поднесущих по каналу может быть уменьшено как процент от количества используемых поднесущих, что снова увеличивает эффективную скорость передачи данных в данном канале.

Важно знать! Приведенные выше цифры показывают увеличение используемых поднесущих на ~ 10% по сравнению со стандартом 802.11ac после учета коэффициента 4x.

Более длинный символ OFDM позволяет увеличить длину циклического префикса, не жертвуя спектральной эффективностью, что, в свою очередь, обеспечивает повышенную устойчивость к разбросам с большой задержкой, особенно в условиях вне помещения.

Уменьшая циклический префикс до минимального символьного времени, мы увеличиваем спектральную эффективность и устойчивость к условиям многолучевого распространения сигнала. Так же снижается чувствительность к джиттеру в передающем канале в многопользовательском режиме. Есть, конечно, и некоторые побочные эффекты. Точность частоты, необходимая для успешной демодуляции более близко расположенных поднесущих, является более строгой. Кроме того, быстрое преобразование Фурье (БПФ) требует немного более сложной схемотехники и вычислительной мощности.

Модуляция 1024-QAM и увеличенная длина символа OFDM

Символ OFDM является основным строительным блоком передачи в Wi-Fi сетях. Основные характеристики: размер быстрого преобразования Фурье (БПФ или FFT – Fast Fourier Transform), разнесение поднесущих и длительность символа OFDM связаны, учитывая фиксированную ширину канала. В Wi-FI 6 разнесение поднесущих уменьшается в 4 раза, а длительность символа OFDM увеличивается в 4 раза.

Предусмотрено увеличение защитного интервала (Guard Interval, GI) между OFDM-символами, что позволяет уменьшить межсимвольную интерференцию и обеспечивает более устойчивую связь в помещениях и в смешанных средах – помещение/улица.

Переход от 256-QAM к 1024-QAM увеличивает число битов, переносимых на символ OFDM, с 8 до 10, что повышает скорость передачи данных и эффективность использования спектра на 25%. Но, как и прежде, улучшение работает в условиях, где уровень сигнала высокий, а шум низкий. Это связано с тем, что приемник должен принять решение об уровне модуляции, выбрав одно из 32 состояний вдоль каждой оси (амплитуда и фаза или квадратура), а не одно из 16 для 256-QAM или одно из 8 для 64-QAM.

Для примера! Уровень мощности приема сигнала, необходимый для декодирования кадра в полосе 80 МГц, 1024-QAM 5/6, MCS-11, должен находиться на отметке -45 дБм, а достичь этого можно только когда приемник и передатчик находятся на близком друг от друга расстоянии!

Многопользовательский MIMO на прием и передачу

Расширена функция 802.11ac в канале DL, где точка доступа определяет, что условия многолучевого распространения позволяют передавать фреймы по одному и тому же каналу разным приёмникам одновременно за счёт использования нескольких пространственных потоков.

802.11ax увеличивает размер групп MU-MIMO во входящем потоке, обеспечивая более эффективную работу Wi-Fi сети. Многопользовательский MIMO исходящего канала является новым дополнением к 802.11ax, но откладывается до второй волны (Wave 2).

Это надо знать! MIMO 8TXх8RX:8SS обеспечивает одновременную передачу до 8 пространственных потоков в обоих направлениях.

Как найти свободный канал программой inSSIDer, или WiFiInfoView?

Если вы, открыв список свободных сетей на своем устройстве (ноутбук, смартфон, планшет) видите очень много сетей доступных для подключения, то для поиска свободного канала для вашей сети лучше всего использовать специальные программы. Самая популярная конечно же inSSIDer. Она бесплатная, интерфейс на английском языке, но там все понятно. Еще мне очень понравилась бесплатная, простая и маленькая программа WiFiInfoView (советую использовать именно ее). Сейчас покажу как пользоваться этими программами.

Поиск канала в программе inSSIDer

Для начал нам нужно скачать inSSIDer. Можете найти ее в интернете, или скачайте архив с программой по этой ссылке (домашняя версия 3.0.3.53 для Windows 7 и Windows 8). Что бы установить программу, просто запустите установочный файл из архива и следуйте инструкциям. После установки запустите inSSIDer (ярлык будет на рабочем столе). Если я не ошибаюсь, то эту программу можно так же установить на планшет, или телефон, который работает на Android/iOS. Поищите в фирменных магазинах приложений.

Для работы этих двух программ, у вас должен быть включен Wi-Fi. Устройство должно видеть доступные сети. О настройке Wi-Fi на ноутбуке, я писал в этой статье.

Запускаем значит inSSIDer, и сразу переходим на вкладку NETWORKS. Вы сразу увидите в таблице все доступные Wi-Fi сети и свою сеть. Если вы к ней подключены, то возле нее будет отображаться звездочка.

Нам нужно смотреть на вкладку Channel точнее на информацию, которая отображается под ней. Там показано, какой канал использует каждая сеть.
Поиск свободного канала программой inSSIDer

Смотрим, и выбираем самый свободный канал для своей сети. Кстати, забыл написать: есть три канала, которые никогда не пересекаются. Это 1, 6, и 11, если по программе они не заняты, то в первую очередь попробуйте установить их. Если сеть работает например на 10 канале, то она захватывает еще по два канала с каждой стороны. Например: 8,9,10,11,12. Вы наверное спросите, почему в программе отображается два канала напротив практически каждой сети. 1+5, 13+9 и т. д. Пишут, что это потому, что один канал установлен вручную, а второй выбирает роутер для лучшего покрытия. Сам не мог понять, но проверил, и понял, почему отображается два канала. Это из-за того, что в настройках роутера выбрана ширина канала 40MHz. Или, стоит автоматически выбор, и он установил 40MHz. Если принудительно установить 20MHz, то канал будет отображаться один. Проверено.

Выбор канала с помощью программы WiFiInfoView

WiFiInfoView очень легкая программа, которая даже не требует установки. Да, она отображает меньше информации о сетях, чем inSSIDer, но в ней можно увидеть то что нам нужно, какой канал не сильно занят, или вообще не занят. Скачать программу можете по этой ссылке. Просто откройте архив и запустите файл WifiInfoView.exe. Программа сразу запустится. В столбце Channel можем наблюдать канал каждой сети.

Как найти свободный Wi-Fi канал

Дальше, точно так же как и в случае с программой inSSIDer, смотрим все занятые каналы, и выбираем для себя самый свободный. Его и нужно указать в настройках роутера. Сейчас мы посмотрим, как на роутре установить статический канал Wi-Fi сети.

Как сменить канал Wi-Fi сети на роутере Tp-Link?

Если у вас Tp-Link, то канал меняется следующим образом:

  • Подключаемся к роутеру по Wi-Fi, или кабелю.
  • Открываем браузер и переходим по адресу 192.168.1.1. Если не получается, то попробуйте 192.168.0.1.
  • Появится запрос имени пользователя и пароля. Если вы их меняли, то укажите свои. По умолчанию это admin и admin.

В настройках перейдите на вкладку Wireless — Wireless Settings (Беспроводной режим — Настройки беспроводного режима). Напротив пункта Channel (Канал) выберите один из 13-ти статических каналов. Но сначала нужно проверить, правильно ли установлен ваш регион в пункте Region на этой же странице.

Смена канала Wi-Fi на Tp-Link

Сохраните настройки нажав на кнопку Save. Перезагрузит роутер и протестируйте работу сети.

Смена канала на D-Link

Здесь примерно все так же. Подключаемся к своей сети, и заходим в настройки. В браузере перейдите по адресу 192.168.0.1 и укажите имя пользователя и пароль. По умолчанию также admin и admin. Если что-то не получается, то смотрите подробную инструкцию по входу в настройки.

В настройка переходим на вкладку Wi-Fi. Напротив Регион выбираем страну где вы живете, а напротив Канал выбираем нужный нам статический канал. Нажимаем кнопку Применить.

Меняем канал сети на D-LinkКстати, вы заметили, как классно все сделано у роутеров D-Link. Там отображается канал, который используется на данный момент. А при выборе канала, напротив каждого отображается насколько он загружен. Если вы меняете канал на D-Link-е, то даже нет необходимости в программах, которые мы рассматривали выше. Здесь все понятно и наглядно. Я думаю, что информацию он отображает правильную.

Как сменить канал Wi-Fi сети на маршрутизаторе Asus?

На этим маршрутизаторах все делается так же просто. Подключаемся (если еще не подключены), заходим в настройки, открыв в браузере адрес 192.168.1.1 и указываем имя пользователя и логн. По умолчанию так же admin и admin. Или смотрите подробную инструкцию.

Перейдите на вкладку Беспроводная сеть, укажите канал, и нажмите кнопку Применить.

Смена канала на маршрутизаторе Asus

Роутер сам перезагрузится.

Меняем Channel на роутерах Zyxel Keenetic

Подключаемся к нашему Zyxel, открываем браузер и набираем адрес 192.168.1.1. Переходим по нему и указываем имя пользователя (по умолчанию admin) и пароль (по умолчанию 1234). Возможно, вам еще пригодится подробная инструкция по доступу к панели управления на ZyXEL Keenetic.

В настройках открываем вкладку Сеть Wi-Fi, проверяем правильно ли выбрана страна, и задаем канал.

Zyxel Keenetic - смена канала wi-fi

Не забудьте применить настройки.

Указываем статический канал на роутере Tenda

На руотерах Tenda доступ к настройкам открывается по адресу 192.168.0.1. Имя пользователя по умолчанию — admin. Поле «пароль» оставляем не заполненным. Если вы меняли эти данные для входа в настройки, то укажите свои.

В настройках откройте вкладку Wireless settings. В поле Channel выберите нужное значение.

Смена канала на Tenda

Сохраните настройки нажав на ok.

Послесловие

Знаю случай, когда из-за очень большого количества соседних Wi-Fi сетей не получалось настроить роутер. Точнее, невозможно было пользоваться интернетом по Wi-Fi, что только не делали. Как правило, в таких случая спасает покупка нового маршрутизатора, который умеет транслировать сеть на частоте 5 Ггц. Там каналы точно не заняты.

Надеюсь, статья получилась информативная и понятная. А вы смогли найти свободный канал и сменить его. Если вы проверили работу на нескольких каналах, а проблема с беспроводной сетью осталась, то возможно есть другие причины. Опишите все подробно в комментариях, постараемся разобраться.

Технология формирования луча (Beamforming) явная и универсальная

Технология явного формирования луча к клиенту (explicit beamforming) решает ряд вопросов, связанных с замиранием и переотражением сигналов, с их не синфазностью. Приходя в разных фазах, сигнал теряет мощность, а это сильно влияет на дальнодействие и скорость передачи данных.

Explicit beamforming требует от клиента возврата диаграммы направленности. Роутер отправляет клиенту сигнальные пакеты со всех своих антенн, клиент в обязательном порядке отсылает назад информацию, что он увидел от этих антенн, роутер вычисляет местоположение клиента, вносит поправки в работу всех своих приемо-передатчиков. Таким образом роутер может устранить замирания, внести поправку в фазовый сдвиг на одной из антенн, увеличить амплитуду сигнала для преодоления препятствия.

Важно знать! Явное формирование луча работает только в случае, если есть 2 передатчика и больше, и есть поддержка на уровне клиента.

Если устройство не поддерживает передачу диаграммы направленности, есть упрощенный вариант алгоритма – implicit beamforming (универсальное формирование луча). В этом случае роутер оценивает канал связи, основываясь на том, каким образом клиент принимает данные. Роутер объявляет данные, на каких скоростях он может работать, а клиент уже отвечает, что он будет работать на такой-то скорости. Путем итераций роутер меняет скорость и фазовый сдвиг, и смотрит, что ответит клиент. Если клиент повысил скорость, принимается решение что все хорошо. Так продолжается до тех пор, пока не будет установлена максимальная скорость со стороны клиента.

Какие проблемы решает технология Beamforming

  1. Распределение мощностей передатчиков – роутер может повышать и понижать мощность на каждом канале индивидуально;
  2. Огибание препятствий, работа с переотраженными сигналами;
  3. Устранение замирания одного или нескольких каналов;
  4. Синфазность сигнала на приемнике клиента – увеличение мощности сигнала и скорости приема данных;
  5. Увеличение дальности распространения сигнала.

Это очень ресурсоемкая задача, которая требует серьезных вычислительных мощностей и хорошего охлаждения роутера.

Затухание сигнала

Напрямую зависит от препятствия. Чем больше ширина препятствия, тем сильнее затухание. Также нужно учитывать и материал. Вот таблица примерного затухания.

Материал Ширина (см) Потери сигнала в dB (П) Процент потери в диапазоне (%)
Улица без препятствий 0 0 0
Железобетон 5 25 90
Стекло 0.5 3 26
Дерево 2 9 45
Бетон 15 20 75
Бетон 31 23 82

Расчёт по этой формуле:

W*(100% – П%) =D

  • W – это полный радиус дейсвтия волны без препятсвтий.
  • П – это процент потери диапазона.
  • D – это окончательный диапазон волны после расчёта.

Приведём пример: дальность действия волны W ровна 150 метров на открытой местности. Мы поставим на пути волны стекло в 1 см. Тогда 150*(100% – 26%*2) = 78 метров. Как вы, наверное, увидели, самым серьезным препятствием – является метал. При правильном использовании его можно использовать как отражатель волны.

Также к более плохой связи можно отнести способность огибать препятствие. И эта характеристика также зависит от длины волны. Так как 2.4 ГГц имеет меньший размер волны, то она способна почти без потерь обогнуть более широкое препятствие чем волна 5 ГГц. То есть чем больше длина, тем ниже скорость передачи, но меньше затухание от препятствий.

К затуханию можно приписать, так же естественную потерю мощности сигнала, которая уменьшается со временем пучка волны. От преград волна также, как и света может отражаться. Чем больше отражается волна, тем слабее становится сигнал. Именно поэтому нельзя точно сказать, насколько далеко будет бить тот или иной роутер.

Частоты Wi-Fi: 2.4 и 5 ГГц - полный разбор WiFi диапазонов

OBSS – перекрывающиеся области радиовидимости

В Wi-Fi сетях каждый клиент и точка доступа прослушивают радиоэфир, декодируя преамбулу пакета, они знают, свободна среда для передачи данных или нет. Если шум в канале при этом превысит порог чувствительности на 20 Дб, среда так же считается занятой.

В стандартах 802.11 введено понятие виртуальной занятости среды (механизм NAV – Network Allocation Vector). В кадре есть поле, которое содержит значение счетчика, при получении кадров оно меняется во времени от некоторого значения до нуля. Если значение кода равно нулю, то канал свободен, иначе – занят.

В версиях Wi-Fi 4 и Wi-Fi 5 определение виртуальной занятости среды не зависит от того, к какой сети принадлежит устройство занявшее среду. Клиент в кадре имеет одно значение NAV. Wi-Fi 6 научился определять, из какой сети ведется передача – из своей собственной или чужой. На основании этих данных устройство может менять значение NAV и подстраивать мощность передатчика, меняя пороги чувствительности.

Преамбула 802.11ax содержит поле «цвет сети» (BSS color), что позволяет быстро определять принадлежность сети без полного декодирования пакета. Значение «цвета» выбирается точкой доступа случайным образом в момент инициализации сети. Длина поля BSS color 6 бит, этого достаточно, что бы помеченные пакеты у двух сетей находящихся в зоне радиовидимости не совпали.

Уменьшенное энергопотребление

Существующие режимы энергосбережения дополнены новыми механизмами, позволяющими увеличить интервалы ожидания и запланированное время пробуждения. Кроме того, для устройств IoT введен режим только для канала с частотой 20 МГц, позволяющий создавать более простые и менее мощные микросхемы, поддерживающие только этот режим.
Надежная высокопроизводительная сигнализация для лучшей работы при значительно более низком уровне мощности принимаемого сигнала (RSSI).

Лучшее планирование и более длительное время автономной работы устройства с Target Wake Time (TWT – запланированное время активации). ТД может согласовывать с пользователями использование функции TWT для задания времени доступа к среде путем обмена информацией, которая включает ожидаемую продолжительность активности.

Работа вне помещений

Ряд функций улучшает производительность при работе в уличных условиях. Наиболее важным является новый формат пакета, в котором наиболее чувствительное поле теперь повторяется для надежности. Более длинные защитные интервалы обеспечивают избыточность для корректировки ошибок.

Вывод

Увеличивать скорость через провайдера, подключая другие интернет тарифы не имеет смысла, если у вас старое сетевое оборудование, не поддерживающее новые Wi-Fi стандарты и частоты. С увеличением количества пользователей, возросла и нагрузка на беспроводную сеть, с той же прогрессией растет и количество помех в диапазоне 2,4 ГГц.

Частота 5 ГГц для Wi-Fi роутеров сейчас более свободна и стабильна, имеет больше непересекающихся каналов, а значит сигналы с соседствующих устройств реже накладываются друг на друга и не делят скорость.

Чтобы увеличить сигнал Wi-Fi и скорость интернета, нужно идти в ногу со временем и приобретать современные маршрутизаторы, соответствующие новым требованиям беспроводной сети.